Mixed Interior Penalty Discontinuous Galerkin Methods for Fully Nonlinear Second Order Elliptic and Parabolic Equations in High Dimensions

نویسندگان

  • Xiaobing Feng
  • Thomas Lewis
چکیده

This article is concerned with developing efficient discontinuous Galerkin methods for approximating viscosity (and classical) solutions of fully nonlinear second-order elliptic and parabolic partial differential equations (PDEs) including the Monge–Ampère equation and the Hamilton–Jacobi–Bellman equation. A general framework for constructing interior penalty discontinuous Galerkin (IP-DG) methods for these PDEs is presented. The key idea is to introduce multiple discrete Hessians for the viscosity solution as a means to characterize the behavior of the function. The PDE is rewritten in a mixed form composed of a single nonlinear equation paired with a system of linear equations that defines multiple Hessian approximations. To form the single nonlinear equation, the nonlinear PDE operator is replaced by the projection of a numerical operator into the discontinuous Galerkin test space. The numerical operator uses the multiple Hessian approximations to form a numerical moment which fulfills consistency and g-monotonicity requirements of the framework. The numerical moment will be used to design solvers that will be shown to help the IP-DG methods select the “correct” solution that corresponds to the unique viscosity solution. Numerical experiments are also presented to gauge the effectiveness and accuracy of the proposed mixed IP-DG methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mixed Interior Penalty Discontinuous Galerkin Methods for One-dimensional Fully Nonlinear Second Order Elliptic and Parabolic Equations

This paper is concerned with developing accurate and efficient numerical methods for one-dimensional fully nonlinear second order elliptic and parabolic partial differential equations (PDEs). In the paper we present a general framework for constructing high order interior penalty discontinuous Galerkin (IP-DG) methods for approximating viscosity solutions of these fully nonlinear PDEs. In order...

متن کامل

Optimal BV Estimates for a Discontinuous Galerkin Method for Linear Elasticity

Discontinuous Galerkin (DG) finite-element methods for secondand fourth-order elliptic problems were introduced about three decades ago. These methods stem from the hybrid methods developed by Pian and his coworker [25]. At the time of their introduction, DG methods were generally called interior penalty methods, and were considered by Baker [4], Douglas Jr. [14], and Douglas Jr. and Dupont [15...

متن کامل

Symmetric Interior Penalty Dg Methods for the Compressible Navier–stokes Equations I: Method Formulation

In this article we consider the development of discontinuous Galerkin finite element methods for the numerical approximation of the compressible Navier–Stokes equations. For the discretization of the leading order terms, we propose employing the generalization of the symmetric version of the interior penalty method, originally developed for the numerical approximation of linear self-adjoint sec...

متن کامل

Interior Penalty Discontinuous Galerkin Methods with Implicit Time-integration Techniques for Nonlinear Parabolic Equations

We prove existence and numerical stability of numerical solutions of three fully discrete interior penalty discontinuous Galerkin (IPDG) methods for solving nonlinear parabolic equations. Under some appropriate regularity conditions, we give the l(H) and l(L) error estimates of the fully discrete symmetric interior penalty discontinuous Galerkin (SIPG) scheme with the implicit θ-schemes in time...

متن کامل

L2-Error Estimates of the Extrapolated Crank-Nicolson Discontinuous Galerkin Approximations for Nonlinear Sobolev Equations

We analyze discontinuous Galerkin methods with penalty terms, namely, symmetric interior penalty Galerkin methods, to solve nonlinear Sobolev equations. We construct finite element spaces on which we develop fully discrete approximations using extrapolated Crank-Nicolson method. We adopt an appropriate elliptic-type projection, which leads to optimal ∞ L2 error estimates of discontinuous Galerk...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015